
What your transportation smartcard can tell about you

Dumping and interpreting Lisboa Viva contents

David Ludovino, 64743
david.ludovino@tecnico.ulisboa.pt

Rafael Santos, 64846
rafael.h.santos@tecnico.ulisboa.pt

Duarte Barbosa, 65893
duarte.barbosa@tecnico.ulisboa.pt

Departamento de Engenharia Informática, DEI
Instituto Superior Técnico, IST

Lisboa, Portugal

January 15, 2014

1 Introduction

The Lisboa Viva is a contact and contactless smartcard
used to store tickets and passes that provide access to pub-
lic transports in the Lisbon Metropolitan Area. It is based
on the Calypso platform[1], a set of technical specifications
developed since 1990 by a consortium of European trans-
port operators under the lead of Innovatron company.

In the Calypso platform is based on a seven-layer archi-
tecture illustrated on Table 1.

Our project initially aimed to investigate the security
behind layers 4 and 7. Our plan was to explore the pay-
ment system available online at Portal VIVA1 which al-
lows charging Lisboa Viva cards using a smartcard reader
attached to a personal computer (PC). We managed to
understand the architecture behind the system, but as it
is malfunctioning, it was impossible to collect information
about the charging process.

Therefore, we changed the focus of the project and
opted to investigate the possible privacy issues created by
the use of Lisboa Viva card. To do so we analyzed layers
2, 3 and 5 in order to find what kind of information is
stored in the smartcard. Using cardpeek2 and records of
readings made by Portal VIVA we managed to dump the
memory contents of the card. Later, after gathering more
than 50 card dumps, we were able to interpret the cards’
contents, finding that they contain sensitive data such as
the holder’s birthdate and the last three locations where
he has validated his card. Using this knowledge, we pro-
grammed an add-on script for cardpeek which translates
the information stored inside Lisboa Viva into a human
readable form, allowing card holders to know the sensitive
information they carry around in their pockets.

On the remaining of this report we start in Section 2
by detailing the architecture behind Portal VIVA, how we
were able to analyze it and the relevant information we
extracted by doing so. Then in Section 3.3 we explain the
process behind interpreting the card contents and detail
the kind of information we found. In Section 4 we dis-
cuss the privacy issues raised by the information stored in
Lisboa Viva cards. Finally on Section 5 we present our

1https://www.portalviva.pt
2https://code.google.com/p/cardpeek

conclusions and suggestions to improve privacy in smart-
card based public transportation systems.

2 Analyzing Portal VIVA’s card
interactions

In essence a Lisboa Viva smartcard is an electronic
medium used to store public transport tickets and
passes/season tickets (all these will be referred to as con-
tracts). Contracts can be bought using a variety of means:
directly at the transport operator, at specialized vending
machines, at Multibanco (the Portuguese ATM network)
and since recently at your own PC by visiting Portal VIVA
and using a smartcard reader.

Portal VIVA and ticket offices of the associated trans-
port operators sell an apparently specialized smartcard
reader up for this task, known as Leitor VIVA JÁ. Af-
ter inspecting the reader we found out that it is just a
rebranded SCM 3310v2 from Identive3 with no hardware
or drivers modification. We confirmed this by successfully
using Portal VIVA with an original SCM 3310v2. The
SCM 3310v2 is a simple with-contact reader compatible
with ISO 7816 standard.

With the reader in hands we tried to purchase a contract
while carefully listening to the transaction. The aim was
to gain knowledge on the workings of Portal VIVA.

2.1 Security flaws on user identity proof

Before being able to buy contracts through Portal VIVA
one has register in the system. During the registration
process the user has to insert his Citizen Card, the Por-
tuguese e-ID card, in the smartcard reader. This operation
is meant to verify the user’s identity. However, in prac-
tice, the way it is implemented only guarantees possession
of the Citizen Card and not that the rightful owner is the
one using it.

The Citizen Card is a smartcard which stores a set of
private keys that can be used by its holder to authenti-
cate himself electronically, e.g., to prove his identity to a
website. The usage of these keys is protected by a PIN

3http://www.identive-infrastructure.com

mailto:david.ludovino@tecnico.ulisboa.pt
mailto:rafael.h.santos@tecnico.ulisboa.pt
mailto:duarte.barbosa@tecnico.ulisboa.pt
https://www.portalviva.pt
https://code.google.com/p/cardpeek
http://www.identive-infrastructure.com


layer standards
7 Security Management and Architecture none
6 Terminal Application Software none
5 Data Model Intercode, ITSO, ...
4 Card and SAM security functions none
3 Card Data Structure EN 1545
2 Card OS, Files structure and commands ISO 7816-4
1 Contact and contactless communication interface ISO 7816-(1-3), ISO 14443-(1-4)

Table 1: Calypso platform layers.

known as authentication PIN. Besides the authentication
PIN this e-ID card also has another PIN, the address PIN,
which simply allows access to the holders address which is
stored inside the card. The address PIN is 0000 by default
on all cards.

Instead of asking for the authentication PIN, Portal
VIVA asks for the address PIN. Thus, it is possible for an
attacker to impersonate someone by forging a driver that
feeds fake information to Portal VIVA instead of reading
the card. The only real information the attacker needs is
the victim identity number which is easily accessible on a
myriad of documents.

After insertion of the address PIN the user account
is created and one has immediate access to information
about all Lisboa Viva cards owned by the Citizen Card
holder and all the contracts which were purchased along
the years. We understand that requiring the authentica-
tion PIN would severely hinder access to the system as
only a few people know it by heart. However we believe
that the purchase records are sensitive data which ought
to be better protected. A simple solution is to not disclose
them until proper authentication is provided.

2.2 Portal VIVA architecture

The first thing we noticed was that the Citizen Card op-
eration uses a Java applet acting as middleware between
the browser and the card reader drivers. Later, we ob-
served the same architecture is used to interact with Lis-
boa Viva cards. Before allowing the purchase of contracts,
Portal VIVA asks for the insertion of a Lisboa Viva card in
the reader and reads and interprets its contents. In order
to figure out the steps involved in this operation we:

• Captured the network communication packets using
Wireshark4 and the USB packets using USBPcap5.

• Decompiled the Java applet and read the resulting
code.

• Read the JavaScript scripts included in the page,
which were not minified or obfuscated. We also fol-
lowed their execution path using Firebug6.

Using this information we uncovered the architecture of
interaction between Portal VIVA and Lisboa Viva cards,
depicted on Figure 1. The Portal VIVA HTML page has

4https://www.wireshark.org
5http://desowin.org/usbpcap
6https://getfirebug.com

webserver

JavaScript

Java applet

vcr.dll

driver

smartcard reader

webbrowser

OS

1. request
page

C-APDUs
3. XML with

4. parses XML

JNI 5. C-APDU

user mode
priviledged mode 6. C-APDU

7. C-APDUUSB conection

smartcard

8. C-APDUISO 7816 conection 9. R-APDU

10. R-APDU

11. R-APDU

12. R-APDU

13. joins R-APDUs

R-APDUs
14. XML with

15. HTTP POST
with XML
R-APDUswith C-APDUs

+ JS with string vars
containing XML

2. HTML page

16. interprets R-ADPUs

17. HTML page
with human
readable data

Figure 1: Diagram of the interaction between Portal VIVA
and a Lisboa Viva smartcard.

several JavaScript (JS) scripts and a Java applet that is
launched when the page is loaded by the browser. The JS
comes with predefined string variables containing XML
with one or more ISO 7816-4 C-APDUs (Command Ap-
plication Protocol Data Unit) inside. This XML is sent to
the Java applet which parses it and uses JNI (Java Native
Interface) to call a DLL, vcr.dll, with each C-APDU.
The vcr.dll is then responsible for calling the smartcard
reader driver and retrieving the resulting Response APDU
(R-APDU) back to the Java applet. The applet joins the
several R-APDUs inside an XML string and sends it to the
JS. The JS posts this XML as is to Portal VIVA server
which answers with a new HTML page containing an in-
terpretation of the data that went inside the R-APDUs.
This new page may also contain new strings with XML in
the JS, which are used to repeat the process and retrieve

https://www.wireshark.org
http://desowin.org/usbpcap
https://getfirebug.com


more data from the card.
With this architecture no processing logic is executed

in the client PC. The entire software stack on the client
side is in place just to direct C-APDUs into the card and
retrieve R-ADPUs back into the server.

After this we proceeded to the contracts purchase. Un-
fortunately we were unable to record any interactions be-
cause the credit card payment system of Portal VIVA was
malfunctioning. Some days later, after warnings from our
part, the purchase system was disabled and is still unavail-
able as of the date of writing of this report.

3 Dumping and interpreting Lis-
boa Viva contents

Being unable to analyze the transactions which write
contracts into the card, we opted to focus our attention
on the byte streams that Portal VIVA retrieves from it,
and inquire into what information they contain.

Meanwhile we found cardpeek, an utility which provides
a rich Lua7 API that can be used to easily retrieve data
from smartcards and interpret it. Cardpeek already comes
with a Lua script, named calypso.lua, that is able to
dump the contents of Calypso cards.

3.1 Calypso file and data structure

The data inside Calypso cards is organized into an hier-
archical structure of files according to ISO 7816-4[2] (check
Table 1) and much like any current Operating System.
There are two types of files: Dedicated Files (DF), also
known as directories of files, and Elementary Files (EF).
A DF contains EFs and other DFs. An EF contains only
data, which is organized into records. An EF can have one
or more records. There are three types of EF files which
vary according to the way their records are organized:

• Linear files contain a set of records organized in se-
quence. It is possible to read or write any record
directly.

• Cyclic files contain a set of records organized in a
stack, with the most recent on top. It is possible to
read any record. However, writing is only possible by
appending a new record to the top of the stack, while
discarding the oldest record.

• Counter files are like Linear files but besides reading
and writing allow incrementing and decrementing a
value to one or a few records.

The ticketing information inside a Calypso card is con-
tained under a single DF which has several EFs of different
types (check Figure ??). These allow storing at least:

• application and holder information,

• 4 contracts,

• 4 counters (0 to 16.777.215 each),

7http://www.lua.org

• log of at least the 3 last events,

• card manufacturing information and secret keys.

Besides the Calypso DF, a Lisboa Viva card contains two
EFs under the root DF, ICC and ID, storing one record
each.

3.2 Proprietary APDUs used by Portal
VIVA

Reading data from the card is simply a matter navigat-
ing through the file structure, selecting a file and read-
ing its contents by sending the C-APDUs defined in ISO
7816-48. The calypso.lua script uses these C-APDUs to
retrieve the ticketing information inside Calypso cards.

A C-APUD is a byte stream composed of at most seven
fields:

CLA, 1 byte, class of instruction

INS, 1 byte, instruction code

P1, 1 byte, parameter 1

P2, 1 byte, parameter 2

Lc, 1-3 bytes, number of bytes present in the data field

Data, Lc bytes, string of bytes with additional data

Le, 1-3 bytes, maximum number of bytes expected in the
data field of the response to the command.

By comparing the records retrieved by Portal VIVA and
calypso.lua we found that Portal VIVA was able get one
record from the ID file, while calypso.lua had the access
denied. We then noticed that before doing so Portal VIVA
sent a PIN using the VERIFY C-APDU (check Figure 2).

942080000430303030
Structure according to ISO 7816-4.
Coding and meaning are proprietary.

Proprietary Secure Messaging format

VERIFY command

CLA INS P1 P2 Lc Data (password)

0

Figure 2: VERIFY C-APDU sent by Portal VIVA.

The most important aspect of this C-APDU are its first
8 bits, 0x94, belonging to the CLA field. These tell us that
although the structure of the APDU follows ISO 7816-4,
the coding inside the various fields is proprietary. In order
words, Calypso uses undefined behavior in the standard
to implement more functionality. For instance, according
to the standard, the predicates of a VERIFY commands
should always be 00 but we find an 80 in P1. All other

8http://www.ttfn.net/techno/smartcards/iso7816_4.html#

table11

http://www.lua.org
http://www.ttfn.net/techno/smartcards/iso7816_4.html#table11
http://www.ttfn.net/techno/smartcards/iso7816_4.html#table11


C-APDUs sent by Portal VIVA carry the same CLA along-
side undefined values in P1 and P2.

We managed to have a notion of which operations are
done by those C-APDUs. Some are able encode two in-
structions that according to the standard had to be sent
separately. A single C-APDU is able to instruct the card
to both select a given file and then read a record from it.
We believe this sort of functionality is used to speed up the
ticketing validation transactions. Still, we were unable to
decipher the complete logic behind the proprietary values
in the predicates.

All C-APDUs sent to the card receive two types of re-
sponses (R-APDUs). For instance, as result of a VERIFY
instruction or a file selection we simply receive a posi-
tive/negative confirmation. However, when we request a
read operation over a record we receive a 29 bytes of data.
This is the full size of the records used in the card. The
data analysis in the next section is over this responses.

3.3 Interpreting the ticketing information

The codification of data elements (dates, time, currency
amounts, string encoding, etc.) inside the EF’s records is
done according to the EN 1545 standard. This standard
defines the number of bits used by each data type and how
they should be interpreted. However, it does not describe
the position of the data types in the card’s records and
does not mention which data types should be present in
a given record. All those decisions are left to the tick-
eting system designers. Furthermore, the standard is not
freely available to the public and we could only find scarce
information about it on secondary sources.

After dumping the card’s records, the calypso.lua

script checks the country and network codes of the Ca-
lypso card and calls a script specialized to interpret the
records of that given card. Cardpeek comes with scripts
for Navigo (France), Mobib (Belgium) and RavKav (Is-
rael) and each adopted a slightly different layout for the
data. Trying to decode Lisboa Viva records using the same
logic applied by these scripts proved incomplete or simply
wrong. However as every Calypso implementation seems
to keep the same information we used that as a starting
point and started by scanning for it.

To help on our analysis, we gathered and annotated
more than 50 card dumps. These were taken at carefully
crafted occasions, in order to allow us the see the minimum
number of bits changing.

3.3.1 ID file with holder’s name

When we captured the USB communication between
Portal VIVA and the card reader we found the name of
the Lisboa Viva holder inside a USB packet originating
from the reader. Thus we were sure it was stored in some
EF. Though, our initial dumps proved unable to read this
data. Only after finding the VERIFY C-APDU used by
Portal VIVA (see Section 3.2) were we able to read the
record inside ID file and check that it contains the holder’s
name in ISO-8859-1 (Latin-1) character encoding.

3.3.2 ATR and ICC file with card number

Another information we suspected to be stored in the
card was the card number. Like Navigo cards, Lisboa
Viva gives an ATR (Answer To Reset) that, besides iden-
tifying the card type, also includes this number. A simple
conversion from hexadecimal to decimal revealed it is the
number printed in the face of the card. Later we found
the same value inside the only record of ICC EF. This ICC
(Integrated Circuit Card) file is apparently used to store
some more data about the card itself but we were unable
to decode it.

3.3.3 Event logs

Event logs EF stores 3 records with information about
the last 3 validations done with the smartcard, for instance
while entering or exiting a transportation network. We
had a feeling that these records contained location and
time data that was enough to track the holders movements
and thus dedicated much effort into decoding them.

Searching for timestamps was our first idea as, for prac-
tical purposes, these are inevitable to verify the freshness
of card validations. Following the layout used on Navigo
cards9 we found a possible timestamp in the first 32 bits
of the records. Strangely, in order for it to make sense
we had to divide the value by 4, indicating that relevant
data was included just in the first 30 bits. Also, unlike
the common Unix timestamps, these ones did not contain
the number of seconds since 00:00 of 01/01/1970. After
validating a card at a known time we calculate the epoch
base as being 00:00 of 01/01/1997. Later we found that
all this was specified in the EN 1545 standard.

As the rest of the data was very cryptic we decided
to compare records from multiple cards, on different sce-
narios and operators. By observing which regions of the
record changed and in which scenarios allowed us to start
mapping it.

The 4 bits corresponding to the transition type (en-
try/exit) were easily identifiable by looking at records cor-
responding to different transitions inside the same Metro
station. One further help was that these bits were byte-
aligned and we could distinguish them in the hexadecimal
representation. Unfortunately for the remaining fields we
had to analyze the record in binary.

The operator number was also easy to identify as its
position revealed to be consistent between different op-
erators. Then we observed a region of 2 bytes changing
between the same values regularly. A detailed analysis was
consistent with associating this region with the transport
line. Later we found that each operator uses this region
in a different way. Metro Transportes do Sul registers the
line number once in this region, Metro Lisboa registers it
twice, Fertagus leaves it empty as it only has one line and
Carris uses it to register the bus number.

Then we searched for the number representing the sta-
tion. We already had most regions mapped, and knew
which information does not change, is zero or changes in-
dependently of the station. Therefore it was easy to find
a candidate region to store the station, that we suspected

9http://www.piratesmag.com/xxx/pass.html

http://www.piratesmag.com/xxx/pass.html


to be 8 bits wide. Later we found out that some operators
register the station in this position in different ways. For
instance, Metro Lisboa only uses the first 6 bits and keeps
the last 2 bits to store some additional information.

After observing that a 16-bit region was repeated in
some records belonging the same station we suspected and
experimentally confirmed that it was the validation device
code.

Finally, we read in Calypso documentation[2] that an
event is associated with the contract that allowed en-
trance. We looked at the regions still unmapped, particu-
larity in dumps from cards with multiple active contracts.
By doing so we found a 4-bit region where each bit is asso-
ciated with one of the four coutracts that can be stored in
Lisboa Viva. One of these bits is always set to one, indi-
cating that the associated contract was the one to granting
access.

We managed to map Figure 3 from our work, classifying
groups of bits from the Even log records according to how
they are used.

Figure 3: Mapping of the data stored on each Event log
record.

Using the information collected from all the dumps we
created a mapping between operator, line and station
numbers and their real names. We managed to map the
entire network of Metro Lisboa and Fertagus. For CP
we completed the mapping of Sado and Cascais lines and
made a partial mapping of the Sintra-Azambuja line. For
Metro Transportes do Sul, Transtejo and Soflusa we also
made a partial mapping of their networks. We believe that
with additional data and time we would be able to create
a complete map of all transport networks that use Lisboa
Viva.

3.3.4 Contracts

The Contracts EF has 4 records which are able to store
one transportation contract each. In Lisboa Viva each
contract may be valid in a single operator or in a set of
interconnected operators.

We started by analyzing a simple contract, for a single
operator, and about which we had a good set of informa-
tion, retrieved from a reading in Portal VIVA. Being a
season ticket, that contract had start and end dates. To

find them we just interated over all positions of the record
with a function that mapped bits into a date according to
the EN 1545 date standard (14 bits storing the number
of days since 01/01/1997). Eventually we found two po-
sitions containing the start date we were looking for and
none with the end date. Looking at older contracts we
saw that the second position used to contain the end date
but nowadays just keeps a copy of the start date.

Thus it seamed plausible that contracts were now stor-
ing the validity period, e.g. 31 days, instead of the end
date. This assumption turned out to be right and we found
7 bits storing the validity period. Instead of a period mea-
sured in days, some contracts store it in months (usually
1). By comparing these different contracts side-by-side we
identified a 16-bit wide field which indicates the time unit
to be used.

With the dates mapped we run a new scan over the
entire record to determine if the operator was stored using
the same number as in the Event logs. It was and we found
it in the first 7 bits of the contract record.

Finally, by comparing several contracts from the same
operator we identified 16 bits which store the product
number.

Then we turned our attention to combined contracts,
valid in multiple operators. We found that in the operator
number these store an high value with no correspondence
to any existing operator. These contracts have informa-
tion in positions to the right that are filled with zeros in
the single operator contracts. Thus we directed our search
there, finding that it contains 5-bit wide fields with the
operators’ numbers. In the middle of these fields there is
data that we believe is related to the geographical validity
of the contract inside each operator’s network, though we
had no time to further investigate this.

With all this previous information we draw the
schematic of Figure 4, classifying groups of bits accord-
ing to how they are used.

Figure 4: Mapping of the data stored on each Contract
record.

As with Event logs, we used the available dumps to
create a mapping between product numbers and their real
name. With this were are now able to tell the name of the
different contracts.



3.3.5 Counters

Each Contract record has an associated Counter EF
with one record. The first Countract record is associ-
ated with the first Counter EF (202A) and so on. The
Counter records are used in Lisboa Viva to store currency
amounts, when a contract known as Zapping is present in
the Contracts. Zapping allows the usage of Lisboa Viva
to store pocket money which is decreased once we vali-
date the card at a public transport. The current balance
was easily spotted on the most significant 3 bytes of the
counters. Converting these bytes to decimal gives us the
amount in Euro cents.

It is plausible that counters are also used to store the
number of available single-journey tickets of a given type.
Though, we could not confirm this as we found no Lisboa
Viva card containing such contracts.

3.3.6 Environment

The Environment EF contains only one record which
was processed in a similar way to the records in the Con-
tracts EF. With a scan we confirmed our strong suspicions
that this record contained the issuing and expiry date of
the card.

Then, while looking at receipts printed by the automatic
tickets vending machines, we found that they uniquely
identify a card using two distinct numbers: the card num-
ber present in ATR and ICC and another number known
as Lisboa Viva (LV) card number. With a scan that just
converted values to decimal we found the LV card number
in the Environment record. The first 3 digits of this num-
ber are the number of the operator that issued the Lisboa
Viva card.

Finally, based on the Environment record of the Israeli
RavKav we found that Lisboa Viva contains the birthdate
of its holder. The birthdate is stored in 32 bits. To inter-
pret it we have to group the bits into groups of 4 and con-
vert them to the corresponding hexadecimal characters.
The 8 characters obtained are then read like ddmmyyyy.

3.3.7 Other EFs

The remaining EFs contained by the card, Special
events and Contract list, were always found filled with
zeros and thus we suspect they are never used in Lisboa
Viva.

3.4 Lisboa Viva interpreter script for
cardpeek

Using all the information detailed in Section 3.3 we pro-
grammed an add-on script for cardpeek. Our script runs
after calypso.lua and translates the data dumped from
the card into a human readable form, as shown in Figure 5.
This allows card holders to know the sensitive information
they carry around in their pockets.

Figure 5: Screeshot of the cardpeek script displaying the
contents of a Lisboa Viva card.

4 Security and privacy issues

From the privacy point being able to read the holder’s
name is not a big issue since this info is available on the
face of the card. Other information, such as the last trip
information could have more serious implications. By ob-
taining a card is possible to know the time, departing sta-
tion and in some operators the arriving station of a trip.
This information could ultimately be used to spy on a per-
son, and allow an attacker to discover where someone lives
and work and whether the person deviates from this route.
While the information stored on the card is limited, and
the kind of data revealed by spying on the card similar
to what one would learn by looking at a paper ticket for
example, a person concerned by its privacy should treat
Lisboa Viva with care. Lending the card or losing it can
possibly be used to reveal a lot of personal information.

smartphones -¿ NFC -¿ read peoples names. Same info
available using contactless interface.

5 Conclusion

Our analysis allowed us to have a clear insight of the
possible security issues with Lisboa Viva card. Although
we did not manage to use the PC interface to charge a
card, we believe from what we discovered, that we would
not be able to easily attack it. The system avoids doing
any processing outside the server or the card chip and
since Calypso disclosures they use triple-DES encryption
for transactions it should not be possible for an attacker
to tamper with the card.

Portal VIVA show no purchase records until proper au-
thentication.

Our experiences with Lisboa Viva card allowed us to



better understand the security mechanisms used by the
card. Although the first part of the project failed we still
managed to discover the Lisboa Viva system architecture
a learn a lot about the interaction with the card. Our se-
curity analysis to the card dumps was more successful. We
managed to decipher the information stored on the card
about the user’s trips. We believe that most of this info
is necessary and the requirements of cost and transaction
speed drove the Calypso project to adopt this approach.
Still, we hope that future systems will take privacy in con-
sideration and encrypt this kind of information or simply
don’t store it in the card itself.

References

[1] Calypso Networks Association. Calypso hand-
book. http://calypsotechnology.net/index.php/

documents/specifications/public-documents/

79-100324-calypso-handbook-v11, 2010.

[2] Calypso Networks Association. Ca-
lypso functional specification. http:

//calypsotechnology.net/index.php/

documents/specifications/public-documents/

78-010608-functional-card-application-v14,
2010.

http://calypsotechnology.net/index.php/documents/specifications/public-documents/79-100324-calypso-handbook-v11
http://calypsotechnology.net/index.php/documents/specifications/public-documents/79-100324-calypso-handbook-v11
http://calypsotechnology.net/index.php/documents/specifications/public-documents/79-100324-calypso-handbook-v11
http://calypsotechnology.net/index.php/documents/specifications/public-documents/78-010608-functional-card-application-v14
http://calypsotechnology.net/index.php/documents/specifications/public-documents/78-010608-functional-card-application-v14
http://calypsotechnology.net/index.php/documents/specifications/public-documents/78-010608-functional-card-application-v14
http://calypsotechnology.net/index.php/documents/specifications/public-documents/78-010608-functional-card-application-v14

	Introduction
	Analyzing Portal VIVA's card interactions
	Security flaws on user identity proof
	Portal VIVA architecture

	Dumping and interpreting Lisboa Viva contents
	Calypso file and data structure
	Proprietary APDUs used by Portal VIVA
	Interpreting the ticketing information
	ID file with holder's name
	ATR and ICC file with card number
	Event logs
	Contracts
	Counters
	Environment
	Other EFs

	Lisboa Viva interpreter script for cardpeek

	Security and privacy issues
	Conclusion

